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Abstract

We present a novel methodology to generate curved high-order meshes featuring optimal mesh quality and geometric accuracy.
The proposed technique combines a distortion measure and a geometric L2-disparity measure into a single objective function.
While the element distortion term takes into account the mesh quality, the L2-disparity term takes into account the geometric error
introduced by the mesh approximation to the target geometry. The proposed technique has several advantages. First, we are not
restricted to interpolative meshes and therefore, the resulting mesh approximates the target domain in a non-interpolative way,
further increasing the geometric accuracy. Second, we are able to generate a series of meshes that converge to the actual geometry
with expected rate while obtaining high-quality elements. Third, we show that the proposed technique is robust enough to handle
real-case geometries that contain gaps between adjacent entities.
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1. Introduction

Unstructured high-order methods [1–5] have been shown to be well suited to tackle problems where geometrical
flexibility, high accuracy, and low numerical dissipation and dispersion are needed. Remarkably, high-order methods
feature exponential converge rates and therefore, they have been proved to be faster than low-order methods in several
applications [6–14], especially in those problems where an implicit solver is required [15]. Moreover, high-order
unstructured methods can use curved meshes to approximate the geometry, thus reducing the spurious numerical
artifacts that may arise from a piecewise linear approximation of the curved domain boundaries [16–22].

Unstructured high-order methods rely on a curved high-order mesh that approximates the physical domain. To
enable the benefits of these methods, curved high-order meshes have two requirements. First, the mesh has to be
valid, in the sense that there are not any inverted elements. Even more, the curved mesh has to be composed of
high-quality elements since only one low-quality element can lead to ill-conditioned linear systems [23]. In that case,
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the approximation accuracy is degraded and the solution may be polluted by the introduced error. A curved mesh
is considered to be of high-quality if all the elements have a shape close to regular (smooth and well-conditioned
Jacobian). Second, the geometric error introduced by the approximation of the target domain by curved elements
has to be bounded. Otherwise, the geometric error may pollute the numerical solution and the convergence rate of
unstructured high-order methods can be lost.

One of the most common methods to generate a curved high-order mesh is the a posteriori approach [6,18,24–
39]. In this approach, an initial mesh, composed of elements of the required shape and size, is curved to properly
approximate the boundaries of the target domain while maintaining valid and high-quality elements.

The main contribution of this work is the generation of optimal curved high-order meshes in the sense of element
quality and geometric accuracy. To this end, we describe a novel a posteriori methodology that relies on two different
techniques. On the one hand, similarly to the work presented in [22], we use a point-wise distortion measure to
determine the validity of the mesh. Moreover, we use a regularized [40–44] point-wise distortion measure to formulate
a global optimization problem that allows curving the high-order mesh in order to obtain a valid mesh composed of
high-quality elements. On the other hand, we use an L2-disparity measure [45] to quantify the deviation between a
curved high-order mesh and a parameterized m-dimensional manifold embedded in an n-dimensional space. Thus,
we are able to measure a distance between a mesh and a manifold and therefore, we can improve the geometric
approximation of the target domain. Combining these techniques, we formulate a global problem that takes into
account both the element quality and the geometric error. In our setup, we do not impose that the boundary nodes
have to be on their corresponding geometric entities. Thus, the resulting mesh is not interpolative anymore although
the geometric approximation of the optimized mesh is improved with respect to the geometric approximation of the
initial one, in the sense of the L2-disparity measure.

The proposed methodology has several advantages. First, we show that the high-order mesh optimally converges
to the actual geometry in the L2-disparity sense. Thus, the geometric error is bounded and therefore, unstructured
high-order methods can obtain numerical solutions that optimally convergence to the actual solution. Second, we
show that the proposed technique can be applied to real-case geometries that contain gaps between adjacent entities.
Note that this is common in complex geometries because the involved procedures introduce numerical errors. As long
as the errors are below e prescribed tolerance, the CAD model is considered valid.

The rest of the paper is organized as follows. In Section 2, we review previous literature relevant to this work. In
Section 3.1 we present a simple example to motivate this work. In Section 3.2, we introduce several definitions related
to this work. Section 3.3 deals with the distortion measure and how to curve a high-order mesh. Section 3.4 presents
the L2-disparity measure. Section 4 presents the coupled optimization of the distortion and L2-disparity measures.
Finally, in Section 5, we present several examples to illustrate the application of the proposed method.

2. Related Work

In this work, we adopt an a posteriori approach [6,18,24–39] to generate curved high-order meshes. Given a linear
mesh, the polynomial degree of the elements is increased and the mesh is curved to match the geometry. We highlight
that the main challenge of a posteriori mesh deformation methods is to repair the invalid elements that may arise when
approximating the boundary of the domain.

While most of the methods fix the position of boundary nodes, other approaches allow to move them. Note that
the main issue is to impose that the boundary nodes should approximate the geometry boundary. To this end, it is
possible to include a penalty term in the objective function that enforces that the corresponding nodes move close
to the boundary [46]. It is also possible to impose that the nodes are strictly on the boundary of the geometry. In
[47] the authors proposed a mesh quality improvement method that relocates the volume and surface nodes, but not
the curve nodes. In some applications, such as curved high-order mesh generation with structured meshing, it could
be also required to move the curve nodes. It is possible to express the proposed objective function in terms of the
parametric coordinates of the boundary nodes and the physical coordinates of the inner nodes. For instance, in [35]
the authors minimize an objective function that penalizes both large deformations and small values of the determinant
of the iso-parametric mapping, and in [39], the authors minimize an objective function that penalizes high distortions
of the mesh.
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Fig. 1. Triangular meshes of polynomial degree ten, elements colored by quality, and geometric error at the boundary (thick line): (a) original
interpolative mesh, geometric error amplified by a factor of 105; (b) optimized non-interpolative mesh, geometric error amplified by a factor of
105; and (c) optimized non-interpolative mesh, geometric error amplified by a factor of 109.

However, none of the previous techniques take into account the geometric errors when approximating the bound-
ary of the geometry, since they assume that it is enough to locate the nodes on the geometric entities to correctly
approximate the domain. In [48], the authors introduce an area-based distance to measure the distance between a
curved high-order mesh and a curve in the 2D plane. Then, they optimize the area-based distance at the same time
as the minimum Jacobian of the iso-parametric mapping. In [49], the authors introduce a Taylor-based distance for
planar meshes and curves. Basically, the Taylor distance consists on checking the difference between the tangent and
curvature vectors at the interpolation points of the curve. For the three-dimensional case, the Taylor distance is defined
as the difference of the normal vectors of the mesh and the surface at the interpolation points. In reference [45], we
introduced anL2-disparity measure between a curved high-order mesh and a manifold. Thus, we are able to check the
geometric accuracy of a curved high-order mesh. In addition, we proposed to optimize an objective function related
to the L2-disparity to improve the accuracy of the high-order mesh.

In this work, we optimize a curved high-order mesh by taking into account the distortion of the mesh as well as
the L2-disparity between the mesh and the target geometry. The main difference between the proposed approach and
previous attempts to combine an untangling objective function and a geometric accuracy measure is that we are not
imposing an interpolative mesh. Thus, we are able to further increase the geometric accuracy and obtain the expected
convergence rate of the mesh to the actual geometry.

3. Preliminaries

3.1. Motivation

To illustrate that our methodology is able to optimize a mesh by taking into account both the element quality and
the geometric approximation error, we consider a simple toy geometry. Figure 1(a) shows an initial triangular mesh
composed of curved high-order elements of degree ten, where we have colored the elements according to the shape
quality measure. The black line corresponds to the geometric error of the mesh amplified by a factor of 105. Note
that this mesh is interpolative and therefore, the geometric error is exactly zero at the interpolation points. By moving
the nodes of the mesh, we can obtain an optimized mesh in which the element quality is improved, and the geometric
error is reduced, see Figure 1(b). In this figure, the geometric error is also amplified by a factor of 105. In order to
visually notice the geometric error we have to amplify it by a factor of 109, see Figure 1(c). Note that in our approach,
the boundary nodes are not imposed to be on the geometry in order to obtain an interpolative mesh. Thus, we generate
a non-interpolative mesh that better approximates the target geometry than the initial mesh.
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3.2. Definitions

We consider that a curved high-order mesh in the physical domain,MP, is composed of a set of elements, eP, and
that each element has a corresponding master element, eM . Thus, the physical mesh can be defined in terms of an
element-wise parameterization φP in such a way that:

φP|eM : eM −→ eP ⊂ Rn

ξ 7−→ x =

np∑
i=1

xiNx
i (ξ),

where ξ are the coordinates in the master element, np is the number of nodes of the high-order element eP, xi are the
coordinates of the i-th node in the physical space, and {Nx

i }i=1,...,np is a Lagrangian basis of polynomial shape functions
of degree p defined in the master element. We define the master mesh,MM , as the mesh composed of all the master
elements of the physical mesh,MP.

3.3. Quality and Distortion Measures

LetMI be a straight-sided high-order mesh, composed of elements of the desired shape and size. In the a posteriori
approach, we have to curve the elements ofMI in order to correctly approximate the geometry model. To this end,
we deform the ideal mesh,MI , to obtain the physical mesh,MP, by means of a diffeomorphism φ. According to [22],
we can obtain mapping φ by optimizing the functional

EQ(φ) = ‖Mφ − 1‖2 , (1)

where ‖·‖ is the L2 norm of functions, and M is a regularized point-wise shape distortion measure defined as [40–42]

Mφ(y) =
|Dφ(y)|2

nσδ(Dφ(y))2/n ,

being | · | the Frobenius norm of matrices, σ the determinant of Dφ and

σδ =
1
2

(
σ +
√
σ2 + 4δ2

)
.

The point-wise distortion measure equals to one when the matrix Dφ(y) is a rotation combined with an isotropic
scaling, and it tends to infinity when Dφ(y) becomes non-invertible. Note that the optimal mapping φ should have a
point-wise distortion measure equal to one everywhere. Since this is not always possible, in Equation (1) we impose
the optimality condition in a least-squares sense.

Note that the mapping φ can be defined as φ = φP ◦
(
φI

)−1
, being φP and φI the mappings that transform the master

mesh,MM , to the physical and ideal mesh,MP andMI , respectively. Since φP is defined in terms of the position of
the physical nodes and φI is fixed, mapping φ only depends on the position of the physical nodes and therefore, so
does Functional (1).

3.4. L2-disparity Measure

Given a curved high-order mesh and a manifold in the physical space,MP and Σ, respectively, our objective is to
quantify the disparity of the mesh and the parameterized manifold. We assume that the manifold Σ is parameterized
by a continuously differentiable and invertible mapping (diffeomorphism)

ϕ : U ⊂ Rm −→ Σ ⊂ Rn

u 7−→ x = ϕ(u),

whereU is the parametric space of the surface. In this work, we use the OpenCASCADE library [50] to retrieve the
parameterization of the surfaces of a CAD model.
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Fig. 2. L2-disparity measure between a mesh, gray line, and a manifold, black line. To compute the L2-disparity, an auxiliary parametric mesh,
MU , is used.

We define the L2-disparity measure [45] of a physical mesh,MP, and a manifold, Σ, as

d
(
Mp,Σ

)
= inf

α

∥∥∥φP − ϕ ◦ α
∥∥∥ = inf

α

√∫
MM

∥∥∥φP − ϕ ◦ α
∥∥∥2

dΩ, (2)

where ‖·‖ is the Euclidean norm, and α are all the possible orientation-preserving diffeomorphisms between the master
mesh, MM and U, see Figure 2. Note that the definition of the L2-disparity introduced in (2) is independent of
the selected parameterization of Σ because we are taking the infimum over all the possible orientation-preserving
diffeomorphisms betweenMM andU.

To compute the disparity between the mesh and the manifold, we define the functional

EΣ (φP;α) =
∥∥∥φP − ϕ ◦ α

∥∥∥2
(3)

Note that
d
(
MP,Σ

)
=

√
inf
α

EΣ (φP;α).

In order to minimize functional EΣ , we take an element-wise polynomial approximation of the diffeomorphism α.
That is, α|eM ≈ φU |eM such that

φU
h |eM : eM −→ eU ⊂ U

ξ 7−→ u =

Nu∑
i=1

uiNu
i (ξ),

with U the parametric space of the manifold parameterization, and {Nu
i }i=1,...,nu a Lagrangian basis of polynomial

shape functions of degree q. In fact, the mapping φU
h characterizes a high-order mesh,MU , of polynomial degree q in

the parametric space of the manifold, and the position of its nodes is ui, for i = 1, . . . ,NU . Note that the polynomial
degree of the parametric mesh and the physical mesh can be different and, in general, are not the same. In an intuitive
manner, the parametric mesh allows the alignment of the physical mesh with the parameterization of the geometric
entity. Although we do not have yet a theoretical setting to select the value of q, it depends on the parameterization
of the geometric entity, and the polynomial degree of the physical mesh, p. In our experience, if q is high enough
the resulting meshes obtain optimal convergence rate. To this end, in all the presented examples we have set the
polynomial degree of the parametric mesh as q = p + 2.

Since we approximate α by φU , and φU is determined by the position of the parametric mesh nodes, functional EΣ

in (3) also depends on the position of the parametric nodes. Thus, the minimization of functional EΣ with respect to
the parametric node coordinates leads to an approximation of the L2-disparity between the mesh and the manifold.
Moreover, the minimization of functional EΣ with respect to the physical node coordinates and the parametric node
coordinates, leads to the mesh that best approximates the given manifold in terms of the proposed L2-disparity. Note
that in this setup, the coordinates of the nodes are not restricted to be on the manifold Σ. That is, we do not seek a
mesh that interpolates the manifold. We aim to obtain the non-interpolative high-order mesh that best approximates
the given manifold in a weak sense.
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Fig. 3. Diagram of the involved mappings during the coupled optimization process of the mesh quality and the L2-disparity measure.

4. Quality and L2-disparity Coupled Optimization

In this section, we propose a framework to generate curved high-order meshes with optimal mesh quality and
geometric accuracy. Figure 3 shows the diagram of the involved mappings during the coupled optimization process
of the mesh quality and the L2-disparity measure. Our input data is a CAD model, Ω, composed of several geometric
entities in such a way that

Ω =

N⋃
k=1

Ωk,

where each of the sub-entities are the different solids, surfaces, curves and points that compose the geometry. In
addition, each sub-entity of the CAD model, Ωk, is embedded in a manifold Σk parameterized by a continuously
differentiable and invertible mapping (diffeomorphism)

ϕk : Uk ⊂ Rdk −→ Σk ⊂ R3

u 7−→ x = ϕk(u) ,

where ϕk and dk are the parameterization and the dimension of manifold Σk, andUk is the corresponding parametric
space.

We also consider a curved high-order mesh of polynomial degree p in the physical domain,MP, that approximates
the CAD model, Ω, in such a manner that

MP =

N⋃
k=1

MP
k ,

where eachMP
k is a curved high-order mesh of polynomial degree p that approximates the corresponding geometric

entity Ωk. We consider that the physical mesh, MP, is defined in terms of a continuous element-wise polynomial
diffeomorphism, φP and that each of the sub-meshesMP

k is defined as the corresponding restriction of φP

φP
k = φP|MM

k
,

being MM
k the mesh composed of all the master elements of the mesh MP

k . In order to compute the quality of the
physical meshMP, we have an ideal mesh,MI , that defines the optimal elements according to shape and size. Note
that the physical mesh can also be defined as the deformation of the ideal mesh by the mapping φ, as seen in Section
3.3. Finally, in order to compute the disparity of the meshMP

k and the geometric entity Ωk, we need a curved high-
order mesh of polynomial degree q in the parametric domain of Ωk, see Section 3.4.

The main objective of this work is to determine an optimal physical mesh, MP, in terms of mesh quality and
geometric approximation. To this end, we define the functional

Eµ(φP;φU
1 , . . . ,φ

U
N ) = EQ(φ) + µEΩ (φP

1 , . . . ,φ
P
N ;φU

1 , . . . ,φ
U
N ), (4)
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where φ = φP ◦
(
φI

)−1
and

EΩ (φP
1 , . . . ,φ

P
N ;φU

1 , . . . ,φ
U
N ) =

N∑
k=1

EΩk (φ
P
k ,φ

U
k ) (5)

Taking into account Equations (2) and (5), we define the L2-disparity between a curved high-order mesh,MP, and
a CAD model, Ω, as

d
(
MP,Ω

)
=

√
inf

φU
1 ,...,φ

U
N

EΩ (φP
1 , . . . ,φ

P
N ;φU

1 , . . . ,φ
U
N ) =

√√√
inf

φU
1 ,...,φ

U
N

N∑
k=1

EΩk (φ
P
k ,φ

U
k ) (6)

Note that in Functional (4), the mapping φP is determined in terms of the position of the physical mesh nodes.
In addition, mappings φU

k are determined by the position of the parametric nodes of the corresponding entity. Thus,
Functional (4) is defined by the position of the physical mesh nodes, and by the position of the parametric nodes of
all the geometric entities. For this reason, the optimization of Functional Eµ can be interpreted as finding the optimal
position of the physical and parametric nodes that minimizes the mesh distortion and the L2-disparity measure. Note
that in the present setup, we do not impose that the boundary physical nodes have to lie on their corresponding
geometric entities. For this reason, after the optimization process ends, we obtain a non-interpolative mesh.

Parameter µ in Functional (4) weights the functional related with the quality and the functional related with the
disparity. In our applications, instead of fixing a value for µ, we adopt a penalty strategy where µ is the penalty
parameter. The penalty method, see [51], consists of solving a series of optimization problems with an increasing
penalty parameter. To optimize each problem, we use Newton’s method, with exact derivatives, to select an advancing
direction, and a back-tracking line-search method, with the strong Wolfe condition, to compute the step length, see
[51] for more details. After each optimization, we set the new penalty parameter as µk+1 = αµk. In our application,
we are using α = 10.

The proposed penalty method ends when a prescribed geometric precision, δabs, is achieved. If this geometric
precision cannot be fulfilled, due to geometric and mesh quality constraints, we use an additional stopping criterion
in which we check if the relative difference of the disparity functional in two consecutive optimizations is less than a
given tolerance, δrel. That is, the two stopping criteria are

∣∣∣E∗Ω i

∣∣∣ < δabs and

∣∣∣∣E∗Ω i−1
− E∗

Ω i

∣∣∣∣∣∣∣∣E∗Ω i−1

∣∣∣∣ < δrel.

In all the tested meshes, the algorithm has always terminated successfully using these stopping criteria, and we have
obtained a geometrically accurate mesh composed of high-quality elements.

5. Examples

5.1. Optimal Convergence Rate

The objective of this example is to show that the proposed approach, the L2-disparity measure, Equation (6), con-
verges to zero with optimal rate. Theoretically, the mesh should approximate the target geometry with a L2-disparity
error proportional to hp+1, being h a measure of the element size, and p the polynomial degree of the mesh. To this
end, we generate a series of curved high-order meshes for the geometry shown in Figure 4.

Figure 5 presents a convergence rate analysis of theL2-disparity in an h-refinement process for polynomial degrees
between one and four. At each h-step, there are twice as much elements approximating the inner circle as in the
previous h-step. The left plot shows the convergence rate for the initial interpolative meshes. In the linear case, we
obtain a sub-optimal convergence rate. However, in the p = 2 case, we get super convergence rate of the L2-disparity
measure. For the case of p = 3, we obtain the same convergence rate as p = 2. Finally, for p = 4 the numerical
errors inherent in the localization of the nodes on the curves of the CAD geometry prevent the correct convergence
rate of the L2-disparity measure. The right plot in Figure 6 shows the convergence rate of the L2-disparity measure
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Fig. 4. CAD model of a square with a circular hole.
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Fig. 5. Convergence rate of the L2-disparity for the original interpolative meshes (left) and the optimized non-interpolative ones (right).

Table 1. Minimum element quality of the initial and optimized meshes of the convergence rate analysis.
p = 1 p = 2 p = 3 p = 4

initial optimized initial optimized initial optimized initial optimized
h = 1.5 0.994 0.989 0.910 0.972 0.890 0.973 0.889 0.974
h = 0.75 0.993 0.993 0.976 0.992 0.975 0.984 0.975 0.994
h = 0.375 0.991 0.994 0.990 0.998 0.990 0.998 0.989 0.998

for the optimized non-interpolative meshes. We point out that in all the cases except the linear one, we obtain super
convergence of the proposed L2-disparity measure. That is, we are able to generate series of high-quality meshes that
correctly approximate the target geometry in the sense of theL2-disparity measure. Note that we obtain a convergence
rate proportional to h2p−1/2. It is important to point out that the convergence rate of the disparity measure does not
depend on the initial mesh. The initial mesh size and topology only determines the geometrical inaccuracy of the first
approximation. In a convergence test, the rate is obtained from the slope in logarithmic scale between the disparity of
the last two meshes.

Table 1 shows the minimum element quality for the initial interpolative meshes and the optimized non-interpolative
meshes generated for the convergence rate analysis. Note that the only case where the minimum element quality
decreases is the one corresponding to h = 1.5 and p = 1. For all the other cases, the minimum element quality has
increased or is the same. This shows that we are able to generate a series of high-quality meshes that converge to the
target geometry with the expected convergence rate.

Figure 6 shows the mesh generated for the case of p = 4 and h = 0.375. In Figure 6(a) we see the geometric error
amplified by a factor of 5 · 105. Then, we optimize the mesh, see Figure 6(b), and the geometric error is reduced. To
actually observe the magnitude of the geometric error, we amplify it by a factor of 5 · 109, see Figure 6(c).
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(a) (b) (c)

Fig. 6. Quadrilateral meshes of polynomial degree four, elements colored by quality, and geometric error at the boundary (thick line): (a) original
interpolative mesh, geometric error amplified by a factor of 5 · 105; (b) optimized non-interpolative mesh, geometric error amplified by a factor of
5 · 105; and (c) optimized non-interpolative mesh, geometric error amplified by a factor of 5 · 109.

5.2. Sensitivity of the Method

The objective of this example is to show the sensitivity of the proposed penalty method when increasing the value
of the penalty parameter. To this end, we have generated a triangular curved high-order mesh of polynomial degree
seven around a NACA5507 airfoil profile. Figure 7(a) shows the initial mesh and the geometric error amplified by
a factor of 100. The initial mesh contains one inverted element at the leading edge. In addition, the geometric error
around the leading edge is the largest since the geometry is highly curved. When we apply the proposed optimization
methodology, we obtain a high-quality non-interpolative mesh without any inverted elements, and the geometric error
is decreased, see Figure 7(b).

Figure 8(a) shows the evolution of the L2-disparity measure against the minimum quality, along the different
optimization problems of the proposed penalty method. Note that as we increase the penalty parameter, the minimum
quality tends to decrease. On the one hand, the elements have to accommodate the curvature of the leading edge and,
on the other hand, as the penalty parameter increases, the Hessian matrix of the functional in Equation 4 becomes
ill-conditioned. However, it is worth to point out that the minimum quality in this mesh is around 0.7. Moreover, as
the penalty parameter increase, the disparity measure decreases and therefore, the geometric accuracy increases.

5.3. Dealing with CAD models with gaps

In this example we show the curved high-order mesh generated on a brake disk, see Figure 8(b). The CAD model
of this geometry is complex and there are gaps between the different edges and vertices of the model. That is, there
are vertices that do not lie perfectly on the end points of its adjacent edges. We have to point out that this is a common
situation in CAD models since the performed operations to create the model introduce numerical errors. In practical
situations, the CAD model is considered valid if the gaps between adjacent entities are below a prescribed threshold.
The objective of this example is to show that the proposed framework is able to handle real-case geometries that
contain gaps. To this end, we generate a curved high-order triangular mesh of polynomial degree five for the brake
disk. The initial mesh contain some inverted elements and large geometric errors around the high-curvature curves of
the geometry, see Figure 9(a) for a detailed view of the mesh. When we apply the proposed optimization framework,
we obtain a new mesh without any inverted elements and that better approximates the target geometry, see Figure 9(b).
Note that the largest geometric errors are located around the vertices of the geometry. The reason is that these vertices
do not perfectly lie at the end-points of their adjacent edges. That is, there is a gap around the vertices. Despite this
difficulty, our proposed method is able to handle these cases and delivers a mesh without any inverted elements that
better approximates the target domain than the initial interpolative mesh.
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(a)

(b)

(c) (d) (e)

Fig. 7. Triangular meshes of polynomial degree seven, elements colored by quality, and geometric error at the boundary (thick line): (a) original
interpolative mesh, geometric error amplified by a factor of 100; and (b) optimized non-interpolative mesh, geometric error amplified by a factor of
100. Detail of the leading edge for the (c) original interpolative mesh, geometric error amplified by a factor of 100; (d) optimized non-interpolative
mesh, geometric error amplified by a factor of 100; and (e) optimized non-interpolative mesh, geometric error amplified by a factor of 2500.



E. Ruiz-Gironés, J. Sarrate and X. Roca / Procedia Engineering 00 (2016) 000–000 11

10 -5 10 -4

L2−disparity

0.0

0.2

0.4

0.6

0.8

1.0

q

(a) (b)

Fig. 8. (a) Evolution of the L2-disparity measure against the minimum quality of the mesh along the different optimization problems of the penalty
method. The white dot points at the state of the initial mesh. (b) CAD model of a brake disk.
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Fig. 9. Triangular meshes of polynomial degree four, elements colored by quality, and geometric error at the boundary (thick line): (a) original
interpolative mesh, geometric error amplified by a factor of 104; and (b) optimized non-interpolative mesh, geometric error amplified by a factor of
104.

6. Conclusions

We have developed a new methodology to optimize a curved high-order mesh in terms of both element quality and
geometric approximation. We have combined two objective functions, one that targets the element quality, and one
that targets the proposed L2-disparity measure. Then, we optimize a non-linear objective function using the penalty
method to generate an optimal mesh in the sense of high-quality elements and optimal geometric approximation. The
optimized mesh does not have the boundary nodes on their corresponding geometric entities and therefore, the final
mesh is non-interpolative. Note that non-interpolative meshes have the potential to be more accurate than interpolative
ones.

To define the objective function related to the L2-disparity, we have additional degrees of freedom related to the
parametric meshes. However, these additional degrees of freedom allow to define a method that is independent of the
selected parameterization of the geometric entities. Moreover, as we have shown in the examples, the additional de-
grees of freedom allow to super-converge the distance of a curved high-order mesh to its target geometry. In addition,
we have shown that the proposed approach can handle real-case geometries that contain gaps in their definition. In our
work, the initial triangular and quadrilateral meshes are generated using Triangle [52] and gen4u [53], respectively.
Note that any other available, linear or bilinear, mesh generator can be used.
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The main drawback of the proposed optimization approach is that the penalty method can generate arbitrary ill-
conditioned Hessian matrices when the penalty parameter increases. This may reduce the quality of the high-order
mesh, since the relative weight of the function related to the quality is lower than the one related to the disparity as
the penalty parameter increases. One possible solution is to apply an augmented Lagrangian technique to avoid and
arbitrarily large penalty parameter while still obtaining an optimal geometric accuracy.

In general terms, the number of inner nodes is larger than the number of boundary nodes. Accordingly, the com-
putational cost of the proposed non-interpolative technique is dominated by the cost of relocating the inner nodes.
Therefore, we have observed that the computational cost is equivalent to other a posteriori mesh curving methods
where usually, only the inner nodes are free to move.

In the near future, we will extend to three dimensions the proposed technique. The method can be extended since it
relies on the minimization of two main ingredients: the disparity measure [45] and the mesh distortion [22,39]. Note
that we have previously applied these two ingredients to three dimensional problems.

In this work, we have combined the minimization of the geometric disparity with the minimization of the regular-
ized shape distortion measure. Note that other mesh curving methods could be combined with the same geometric
disparity. The main difference would be the final location of the mesh inner nodes. Nevertheless, we consider that the
convergence rate of the geometric accuracy would not be significantly changed since it would mainly be driven by the
minimization of the disparity measure.
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